Fire and Smoke Detection using CNN with Keras — with source code

Abhishek Sharma
5 min readJan 8, 2022

--

So guys here comes the Fire and Smoke Detection project which is yet another very practical use case of Deep Learning. We will be using CNNs to implement this project. I have used Data Augmentation to increase the volume of my image dataset and I got a very satisfying accuracy of about 90% on a dataset like this.

You can further extend this idea by using it with a Raspberry Pi, a thermal sensor, and a camera for its practical implementation. So without wasting any further time.

Read the full article with source code here — https://machinelearningprojects.net/fire-and-smoke-detection/

Let’s do it…

Step 1 — Importing libraries required for Fire and Smoke Detection.

import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from keras.utils import np_utils
from tensorflow.keras.optimizers import SGD
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential,load_model
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import BatchNormalization,Dense,SeparableConv2D,MaxPooling2D,Activation,Flatten,Dropout

Step 2 — Defining some constants.

INIT_LR = 0.1
BATCH_SIZE = 64
NUM_EPOCHS = 50
lr_find = True

classes = ['Non_Fire','Fire']

Step 3 — Reading images and storing them.

images = []
labels = []
for c in classes:
try:
for img in os.listdir('Image Dataset/'+c):
img = cv2.imread('Image Dataset/'+c+'/'+img)
img = cv2.resize(img,(128,128))
images.append(img)
labels.append([0,1][c=='Fire'])
except:
pass

images = np.array(images,dtype='float32')/255.
  • Here we have just used cv2.imread() to read all the images and store them in an array.
  • Also we are storing labels. 1 is for Fire and 0 for Non_Fire.
  • In the last line we are just simply normalizing the images. Previously our images were form 0–255 but now they are from 0–1.

Step 4 — Just randomly visualizing an image.

ind = np.random.randint(0,len(images))
cv2.imshow(str(labels[ind]),images[ind])
cv2.waitKey(0)
cv2.destroyAllWindows()
  • This image will be different every time because we have used random here.

Step 5 — One hot encoding the labels.

labels = np.array(labels)
labels = np_utils.to_categorical(labels,num_classes=2)

Step 6 — Creating class weights dictionary.

d = {}

classTotals = labels.sum(axis=0)
classWeight = classTotals.max() / classTotals

d[0] = classWeight[0]
d[1] = classWeight[1]
  • Creating class weights dictionary to balance weights during training process.
  • This process is done because our classes are not balanced in this case.
  • Non_Fire images are double that of Fire Images.

Step 7 — Train test splitting the data.

X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.25, shuffle=True, random_state=42)

Step 8 — Initializing the data augmentation object.

aug = ImageDataGenerator(
rotation_range=30,
zoom_range=0.15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.15,
horizontal_flip=True,
fill_mode="nearest")

Step 9 — Creating the layout of the model.

model = Sequential()

# CONV => RELU => POOL
model.add(SeparableConv2D(16,(7,7),padding='same',input_shape=(128,128,3)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))

# CONV => RELU => POOL
model.add(SeparableConv2D(32,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))

# CONV => RELU => CONV => RELU => POOL
model.add(SeparableConv2D(64,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(SeparableConv2D(64,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))

# first set of FC => RELU layers
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))


# second set of FC => RELU layers
model.add(Dense(128))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))

# softmax classifier
model.add(Dense(len(classes)))
model.add(Activation("softmax"))

opt = SGD(learning_rate=INIT_LR, momentum=0.9,decay=INIT_LR / NUM_EPOCHS)

model.compile(loss='binary_crossentropy',
optimizer=opt,
metrics=['accuracy'])

print(model.summary())

Step 10 — Training and saving the model.

print("[INFO] training network...")

H = model.fit(
aug.flow(X_train, y_train, batch_size=BATCH_SIZE),
validation_data=(X_test, y_test),
steps_per_epoch=X_train.shape[0] // BATCH_SIZE,
epochs=NUM_EPOCHS,
class_weight=d,
verbose=1)

print("[INFO] serializing network to '{}'...".format('output/model'))
model.save('output/fire_detection.h5')
  • Simply training and saving our model.
  • The first line in model.fit is aug.flow(X_train, y_train, batch_size=BATCH_SIZE) which will create the augmented data.
  • Also we have passed the class_weight parameter as d which we declared in previous steps.

Step 11 — Visualizing the training process.

N = np.arange(0, NUM_EPOCHS)

plt.figure(figsize=(12,8))

plt.subplot(121)
plt.title("Losses")
plt.plot(N, H.history["loss"], label="train_loss")
plt.plot(N, H.history["val_loss"], label="val_loss")

plt.subplot(122)
plt.title("Accuracies")
plt.plot(N, H.history["accuracy"], label="train_acc")
plt.plot(N, H.history["val_accuracy"], label="val_acc")


plt.legend()
plt.savefig("output/training_plot.png")

Step 12 — Loading the saved model.

# load the trained model from disk
print("[INFO] loading model...")
model = load_model('output/fire_detection.h5')

Step 13 — Live prediction.

for i in range(50):
random_index = np.random.randint(0,len(X_test))
org_img = X_test[random_index]*255
img = org_img.copy()
img = cv2.resize(img,(128,128))
img = img.astype('float32')/256
pred = model.predict(np.expand_dims(img,axis=0))[0]
result = classes[np.argmax(pred)]
org_img = cv2.resize(org_img,(500,500))
cv2.putText(org_img, result, (35, 50), cv2.FONT_HERSHEY_SIMPLEX,1.25, (0, 255, 0), 3)
cv2.imwrite('output/testing/{}.png'.format(i),org_img)

Some examples…

fire
fire and smoke detection using CNN
non-fire
fire and smoke detection using CNN
fire
fire and smoke detection using CNN
non-fire
fire and smoke detection using CNN
fire
fire and smoke detection using CNN
non-fire

Do let me know if there’s any query regarding Fire and Smoke Detection by contacting me on email or LinkedIn. You can also comment down below for any queries.

To explore more Machine Learning, Deep Learning, Computer Vision, NLP, Flask Projects visit my blog — Machine Learning Projects

For further code explanation and source code visit here https://machinelearningprojects.net/fire-and-smoke-detection/

So this is all for this blog folks, thanks for reading it and I hope you are taking something with you after reading this and till the next time 👋…

Read my previous post: EMOTION DETECTOR USING KERAS

--

--

No responses yet